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Abstract
We propose a software platform that integrates methods and tools for multi-objective parameter auto-tuning in tissue image
segmentationworkflows. The goal of our work is to provide an approach for improving the accuracy of nucleus/cell segmentation
pipelines by tuning their input parameters. The shape, size, and texture features of nuclei in tissue are important biomarkers for
disease prognosis, and accurate computation of these features depends on accurate delineation of boundaries of nuclei. Input
parameters in many nucleus segmentation workflows affect segmentation accuracy and have to be tuned for optimal perfor-
mance. This is a time-consuming and computationally expensive process; automating this step facilitates more robust image
segmentation workflows and enables more efficient application of image analysis in large image datasets. Our software platform
adjusts the parameters of a nuclear segmentation algorithm to maximize the quality of image segmentation results while
minimizing the execution time. It implements several optimization methods to search the parameter space efficiently. In addition,
the methodology is developed to execute on high-performance computing systems to reduce the execution time of the parameter
tuning phase. These capabilities are packaged in a Docker container for easy deployment and can be used through a friendly
interface extension in 3D Slicer. Our results using three real-world image segmentation workflows demonstrate that the proposed
solution is able to (1) search a small fraction (about 100 points) of the parameter space, which contains billions to trillions of
points, and improve the quality of segmentation output by × 1.20, × 1.29, and × 1.29, on average; (2) decrease the execution time
of a segmentation workflow by up to 11.79× while improving output quality; and (3) effectively use parallel systems to accelerate
parameter tuning and segmentation phases.
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Introduction

We propose and experimentally evaluate a software platform
that integrates a suite of methods and tools to enable automatic
parameter tuning in analysis algorithms that segment nuclei in
digitized images of tissue specimens fixed on glass slides, also

calledWhole Slide Tissue Images (WSIs). Microscopic exam-
ination of whole slide tissue specimens by pathologists has
long been considered a de facto standard for disease diagnosis
and prognosis. Diseased tissue shows changes in tissue mor-
phology, which are indicators of disease onset and progress
and provide rich information with which to study disease
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biology at the subcellular level. Manual examination of tissue
specimens, however, has had limited use in biomedical re-
search because it is a labor-intensive and time-consuming pro-
cess. Advances in digital microscopy scanners have made it
possible to capture tissue images at very high resolutions;
state-of-the-art scanners can capture images at 100,000 ×
100,000 square pixel resolutions and can automatically scan
hundreds of tissue slides rapidly, thanks to sophisticated auto-
focusingmechanisms.Whole slide tissue images enable quan-
titative and reproducible analysis of tissue morphology—the
importance of improving precision and reducing inter-
observer variability in pathology studies is well recognized
[1–14]. In addition, the Food and Drug Administration
(FDA) has recently approved the use of digitized tissue im-
ages for diagnostic purposes, both recognizing the value of
whole slide tissue imaging in clinical settings and paving the
way for routine use of tissue imaging, which we expect will
lead to significant increases in the number and volume ofWSI
datasets for imaging studies. A number of projects have de-
veloped tissue image analysis methods [15–21] and shown
that quantitative image characterizations from pathology im-
ages can be used to predict outcome and treatment responses
[16, 22–26]. Nevertheless, development of robust and effi-
cient computerized image analysis workflows to reliably ex-
tract imaging features from WSIs remains an open challenge.

Our work targets nucleus segmentation workflows as key
part of this open challenge. Segmentation of nuclei is one of
the most common steps in WSI analysis, because a disease
often manifests itself as changes to the properties, such as
shape and texture, and organization of nuclei in tissue. A nu-
clear segmentation workflow detects nuclei and delineates
their boundaries. Shape, size, intensity, and texture features
are computed for each segmented nucleus based on the char-
acteristics of the image (i.e., tissue) within the boundary of the
said nucleus. These features can then be used to classify im-
ages and patients in downstream analyses [27–29]. Thus, the
segmentation quality in an image may significantly impact the
accuracy and robustness of results obtained from image anal-
ysis studies. The inherent complexity of tissue makes it a
challenging task to develop accurate and reliable segmenta-
tion algorithms. Moreover, many segmentation workflows are
configured and controlled by multiple input parameters,
which have to be tuned in order to optimize segmentation
quality for a given dataset. The parameters oftentimes have
to be re-tuned when the segmentation workflow is to be used
for a new set of images. This problem is referred to in this
work as the problem of parameter tuning, i.e., the problem of
finding a set of parameter values that generate accurate seg-
mentation results for a set of images.

Our work is motivated by the fact that manual parameter
tuning is very time-consuming and error-prone, particularly in
the context of WSI analysis [30, 31]. An alternative approach
is to manually segment several image tiles accurately,

generating a ground truth segmentation set for a given image
dataset, and then apply a computerized method to search for a
set of parameter values that produce the best segmentation
output with respect to the ground truth. This also is a chal-
lenging task, because parameter search space for a segmenta-
tion workflow can be very large, containing billions or tril-
lions of points as is shown in Table 1 for the example segmen-
tation workflows studied in this work. Moreover, the compu-
tational cost of evaluating a single point in the parameter
space, which involves segmenting an image tile and comput-
ing a quality metric for the segmentation results, can be very
high. The parameter tuning process becomes even more chal-
lenging when it involves multiple conflicting objectives such
as the quality of segmentation output and the execution time
of the segmentation process [32–38].

The problem of parameter tuning and optimization has
been investigated in several projects [32, 39–50]. Majority
of the previous works use solutions for particular segmenta-
tion models. A pseudo-likelihood is used in [47] to estimate
parameters for a conditional random field–based algorithm.
Graph cuts are employed to compute maximum margin effi-
cient learning in segmentation parameters [48]. Open-Box
[50] is another interesting solution specific to segmentation
algorithms based on spectral clustering. It deals with the op-
timization by exposing key components of the segmentation
to the user. The Tuner system [30] treats a segmentation pipe-
line as a black-box process, but it uses statistical models to
explore the parameter space. Our work has several novel
improvements over the prior art. Our approach tunes a seg-
mentation workflow as a black-box with efficient optimiza-
tion algorithms that quickly converge to desired results. It
also allows for the use of multiple auto-tuning algorithms
and multiple objectives as well as several domain-specific
metrics for evaluating algorithm output. It is implemented
to take advantage of high-performance computing (HPC) sys-
tems to accelerate runs in the parameter-tuning phase.
Another related work proposed the use of parameter auto-
tuning and efficient parameter sensitivity analysis [45] in mi-
croscopy image with single-objective optimization. We ex-
tend the previous work to develop a multi-objective parame-
ter tuning software platform. Our contributions can be sum-
marized as follows:

1. We have adapted multi-objective optimization algorithms,
some of which were developed to optimize performance
of other classes of applications, in pathology image anal-
ysis, and implemented them in an integrated platform. As
such, our goal is to demonstrate that the target class of
applications can substantially benefit from these methods
and to evaluate the effectiveness of efficient algorithms in
the domain and, for instance, provide a reference and
understand their performance.
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2. We show via experimental evaluation that pathology image
analysis can substantially benefit from multi-objective pa-
rameter optimization that targets the quality of analysis
output and the execution time of analysis. The proposed
platform supports two objectives in parameter optimiza-
tion: reducing the execution time of an image segmentation
run and increasing the quality of the segmentation results.
These objectives conflict with each other in that reducing
execution time often leads to reduction in segmentation
quality, and vice versa. Our approach identifies parameters
that produce segmentation results with good-quality and
reduced segmentation execution time. Users can adjust
the weights of the objectives (quality vs. execution time)
to tune the segmentation pipeline according to their prior-
ities. Our experimental evaluation with three nucleus seg-
mentation workflows shows very good results. First, the
quality of segmentation can be improved up to × 7.8 when
only one objective is set. Second, the multi-objective
tuning can speed up the segmentation process by × 11.79

while improving the segmentation quality by × 1.28 (please
see Table 2).

3. We package our implementation as a Docker container
with a RESTFul interface for easy deployment as a ser-
vice. A user can run the parameter auto-tuning infrastruc-
ture as a service on a local machine or as a remote server
in a Cloud environment. A Cloud deployment can benefit
scientists without access to high-performance systems.
Our implementation supports a variety of spatial queries
that include spatial cross-matching, overlap, and spatial
proximity computations, used to derive segmentation
quality metrics as Dice and Jaccard coefficients [51].

4. We integrate the Docker container with the 3D Slicer [52]
as part of the SlicerPathology extension [53, 54]. This
integration provides a graphical user interface for a re-
searcher to interact with the infrastructure.

5. We propose a high-performance computing approach that
integrates parameter auto-tuning processes and spatial

Table 1 Input parameter sets of
three example segmentation
workflows

Parameter Description Range value

B/G/R Background detection thresholds [210, 220,…, 240]

T1/T2 Red blood cell thresholds [2.5, 3.0,…, 7.5]

G1/G2 Thresholds to identify candidate nuclei [5, 10,…, 80]

[2, 4,…, 40]

MinSize Area threshold of candidate nuclei [2, 4,…, 40]

MaxSize Area threshold of candidate nuclei [900,…, 1500]

MinSizePl Area threshold before Watershed [5, 10,…, 80]

MinSizeSeg Area threshold from final segmentation [2, 4,…, 40]

MaxSizeSeg Area threshold from final segmentation [900,…, 1500]

FillHoles Propagation neighborhood [4-conn, 8-conn]

MorphRecon Propagation neighborhood [4-conn, 8-conn]

Watershed Propagation neighborhood [4-conn, 8-conn]

(a) Parameters of the Morphological Operation- and Watershed-based segmentation pipelines. The search space
contains about 21 trillion parameter points.

OTSU OTSU threshold value [0.3, 0.4,…, 1.3]

Curvature weight Curvature weight (CW) for the Level Set [0.0, 0.05,…, 1.0]

MinSize Area threshold for nuclei [1, 2,…, 20]

MaxSize Area threshold for nuclei [50, 55,…, 400]

MsKernel Radius in Mean-Shift calculation [5, 6,…, 30]

LevelSetIt Number of iterations of the Level Set computation [5, 6,…, 150]

(b) Parameters of the Level Set- and Mean-Shift-based segmentation pipeline. The search space contains about
1.4 billion parameter points.

OTSU OTSU threshold value [0.3, 0.4,…, 1.3]

Curvature weight Curvature weight (CW) for the Level Set [0.0, 0.05,…, 1.0]

MinSize Area threshold for nuclei [1, 2,…, 20]

MaxSize Area threshold for nuclei [50, 55,…, 400]

Watershed Propagation neighborhood [4-conn, 8-conn]

LevelSetIt Number of iterations of the Level Set computation [5, 6,…, 150]

(c) Parameters of the Level Set- andWatershed-based segmentation pipelines. The search space contains about 96
million parameter points.
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query capabilities for comparing analysis results in order
to reduce the execution time of auto-tuning.

Materials and Methods

An overview of the auto-tuning platform is presented in Fig. 1.
Using the 3D SlicerPathology extension from the 3D Slicer, a
user specifies input images and corresponding segmentation
masks, the set of parameters to be tuned and their value
ranges, and the optimization algorithm to be used. In step 2
in Fig. 1, the user can employ the SlicerPathologymodule [37]
in the 3D Slicer [36] to create a segmentation mask for an
input image. The user then invokes the auto-tuning infrastruc-
ture to execute the auto-tuning task—we have implemented a
prototype extension to SlicerPathology so a user can submit
the auto-tuning task through the SlicerPathology graphical
user interface. The task is received in the infrastructure
through a web-service interface and executed as the
tuning system becomes available. During the tuning, the
optimization algorithm selects parameter sets and the seg-
mentation workflow is executed for each of the sets. The
output of an execution are the segmentation results (image
masks), which are compared to ground truth results using
spatial metrics (Dice and Jaccard coefficients) [51]. The
value of the computed metric is used as input to the auto-
tuning or optimization algorithm to guide the search. This
search and comparison loop is repeated until either the
desired objective is met or the maximum number of iter-
ations is reached. In the rest of this section, we describe
the multi-objective strategy used to tune the application
execution times and result quality, the optimization algo-
rithms employed and evaluated in this work, the applica-
tion workflows used in the evaluation, and the implemen-
tation details of the auto-tuning framework.

Multi-objective Auto-tuning Methodology

Multi-objective tuning deals with optimization problems with
conflicting goals, e.g., result quality and execution time or
performance and resource usage. There are multiple solutions
to a multi-objective optimization problem. Existing works in
the literature typically employ one of three fundamental ap-
proaches [33, 35]: (i) A posteriori in which the largest number
of possible solutions is first sought, and then, the one that best
fits the problem is selected; (ii) A priori insertion, in which
there exists a preference about the type of solution most ap-
propriate to the problem at hand. The search is directed to find
that type of solutions; and (iii) progressive insertion of
preferences that is done by targeting the choices of a
decision-maker (a person skilled in the problem domain) dur-
ing optimization to regions that are more likely to contain
appropriate solutions.

Our work employs an a priori insertion approach, because
(a) in our problem, it is not possible to test a large number of
parameter’s combinations as in the a posteriori. Calculating a
large number of combinations (i.e., the set of Pareto optimal
solutions or those in which none of the objectives can be
improved without affecting another objective [32, 37]) would
be very expensive due to the high cost of the test or fitness
function (segmentation) [35], and (b) the use of progressive
insertion of preferences during the search would require the
intervention of a domain expert, but we want to carry out the
optimization process automatically and minimize the users’
burden.

We have chosen the scalarization approach [35, 36, 55] for
inserting a priori preferences and combining objectives in an
optimization function. This approach can efficiently solve
multi-objective optimization problems through adaptation of
single-objective optimization methods. There exists a large
class of optimization methods that efficiently solve single-
objective problems and can be used with scalarization.

Fig. 1 Auto-tuning framework
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Moreover, in our case, we are typically interested in a given
set of weights or preference selected by a user according to the
objective of the optimization.We use a linear scalarization that
assigns weights (wi) to each objective (fi(x)), so that the sum of
the weights is equals to 1. For N objectives, the function to be

optimized is as follows: f xð Þ ¼ ∑N
i¼1wi � f i xð Þ. In our eval-

uation, we mainly target the simultaneous optimization of a
segmentation quality/accuracy that is maximized along with
the minimization of the segmentation workflow execution
time.

Optimization Algorithms

The optimization methods implemented in our work include
Nelder-Mead (NM) simplex [56], Parallel Rank Order (PRO)
[39], Bayesian Optimization Algorithm (BOA) [42], and
Genetic Algorithm (GA) [35, 40]. Briefly, the NM is a com-
monly used optimization algorithm in multi-dimensional
space problems in which the derivatives are may not be
known. It is a heuristic search method that explores the search
space using a simplex or a special polytope with k + 1 vertices,
where k is the dimensionality of the search space. The search
is carried out by modifying and moving the simplex through a
set of complementary operations, such as reflection expan-
sion, contraction, and shrink, that are intended to either quick-
ly find a minimum in the region being explored or to leave a
local minima region. The PRO is similar to NM, meaning that
it uses the same searching mechanisms and operations, but it
enables the evaluation of multiple points of the simplex con-
currently. The GA optimization algorithm models the auto-
tuning problem with individuals whose genes represent the
application parameters. In our GA algorithm, the first set of
individuals is randomly initialized, whereas they are modified
or evolved among iterations of the algorithm using crossover
and mutation. The crossover uses one-point crossover in
which individuals’ parents are combined by swapping parts
of their genes starting into a single point. The crossover be-
tween pairs of individuals occurs with a probability ofC. After
that transformation, the mutation in each gene can take place
with a probability ofM. Once the new population is created, it
is evaluated via segmentation workflow runs (fitness func-
tion), and the results are used again to create another genera-
tion of individuals. The tuning with GA executes for a number
of iterations selected by the end-user. The probabilities C and
Mwere selected experimentally as 0.5 and 0.3, respectively, as
those are the values that maximize the GA performance in our
case.

The BOA [42] is an iterative process that develops a global
statistical model of the objective function. This probabilistic
model is exploited to make decisions about the next point in
the search space for which the objective function should be
evaluated. It uses information from the model or previous runs

in this decision and minimizes the number of function evalu-
ations. As such, this method is expected to be competitive [57]
for objective functions whose evaluations are costly, which is
the case of medical image analysis.

Segmentation Workflows

We have evaluated our approaches using three segmentation
workflows presented in Fig. 2. We include these workflows as
part of our software distribution. The analysis workflows of
tissue images used in our studies compute information from
the images that include segmented objects (e.g., nuclei or
cells) and about 30–50 features per object (shape, intensity,
and texture features). The overall image computation
workflow includes normalization, segmentation, feature com-
putation, and other data analysis stages, the first three being
the most expensive. In this work, we focus on the study of the
segmentation stage. Figure 2 presents three analysis
workflows used in this work. The workflows have the same
high-level structure, but they are different with respect to the
approaches used to implement the segmentation stage. The
first workflow (Fig. 2a) uses Morphological Operations and
Watershed in the segmentation [58], whereas the second one
(Fig. 2b) performs the segmentation based on Level Set and
Mean-Shift clustering [53]. The third workflow uses Level Set
and Watershed for declumping [53] (Fig. 2c). The operations
within these workflows are shown in the figures. Please see
Table 1 for the list of parameters for the segmentation phase of
each workflow.

Software Implementation

This section presents the implementation aspects of the main
modules of our auto-tuning platform presented in Fig. 1. First,
in the BExecution on High-Performance Machines with
Region Templates^ section, we describe the region template
framework that is used to implement the applications for effi-
cient execution on distributed high-performance computing
systems and is the baseline solution in which the tuning
methods and spatial comparison engine were integrated. The
spatial comparison engine that computes the differences be-
tween different segmentation workflows is detailed in the
BSpatial QueryModule for Computing ErrorMetrics^ section.
The containerization and integration of our solutions with the
3D Slicer for simplifying the system deployment and interac-
tion with the proposed tuning tools are then discussed in the
BContainerization and Integration with the 3D Slicer^ section.

Execution on High-Performance Machines with Region
Templates

The auto-tuning methods are deployed in the region templates
(RTs) [59] for efficient execution of image analysis pipelines

J Digit Imaging (2019) 32:521–533 525
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on parallel machines. The integration of applications or
workflows with RT for tuning is performed using an interface
in which the user exports the parameters to be tuned and their
value ranges. In the same interface, the user can also choose
the optimization algorithm to be used and modify the weights
given to each parameter in multi-objective tuning tasks.

We implemented the three example segmentation pipelines in
RT to tune and accelerate their execution. A RTapplication stage
itself can be composed of lower-level operations organized into
another dataflow, and different scheduling strategiesmay be used
at each level. The runtime system implements aManager-Worker
execution model for assignment of work among nodes of a dis-
tributed memory machine. The application Manager creates in-
stances of (coarse-grain) stages and exports the dependencies
between them. The assignment of work from the Manager to
Worker nodes is performed at the granularity of a stage instance
using a demand-driven mechanism.

EachWorker uses multiple computing devices in a node by
dispatching fine-grain tasks (operations that implement a stage
instance) for execution in a CPU core or a co-processor (e.g.,
Intel Phi or GPU). Different scheduling strategies and runtime
optimizations were developed targeting heterogeneous com-
puting devices [60, 61]. Further, RT also implements

optimizations to reduce the cost of exchanging data among
stages and to improve data access locality implemented and
available to the applications transparently [62].

Spatial Query Module for Computing Error Metrics

The computation of quality (or error) metrics to guide the
parameter tuning process involves spatial queries and compar-
ison operations. We implemented a spatial query module,
called RT GIS Engine, to speed up the quantitative compari-
son of segmentation results via a query-based interface with
which queries are expressed using a SQL-like language. The
implementation uses a query engine [63] that supports several
spatial operations, including spatial cross-matching, overlay
of objects, spatial proximity computations between objects,
and global spatial pattern discoveries. These operations are
used to compute high-level metrics for comparison of results
from different analysis runs. The quality metrics include Dice
coefficient, Jaccard coefficient, intersection overlapping area,
and non-overlapping area [51].

The workflow for computation of the comparison and error
metrics is depicted in Fig. 3. The user application computes a
mask and passes it along with the reference mask as input to the

(a) Morphological Operations and Watershed based segmentation workflow.

(b) Level Set and Mean-Shift based segmentation workflow.

(c) Level Set and Watershed based segmentation workflow. 

Fig. 2 Three example image analysis workflows. The workflows are
built using the same coarse-grain stages (normalization, segmentation,
and feature computation), but they differ in terms of the techniques used
to implement the segmentation. The first (figure a) uses Morphological
Operations to identify candidate cells along with Watershed to delineate

and separate clumped cells. The second (figure b) applies the Level Set
strategy to create the initial or candidate cell set and a Mean-Shift-based
clustering to delineate and separate clumped cells. The third (figure c)
uses the Level Set to create candidate cells and the Watershed to separate
clumped ones
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RT GIS engine. In order to execute spatial queries, the objects
(i.e., cell nuclei) identified in the masks are converted into poly-
gons and processed into the query engine. Each of the metrics
implemented uses a set of queries (expressed using a SQL-like
language) that are combined to compute the user-selected metric.
The spatial queries are executed using a Hilbert R*-tree index
[64] to quickly identify intersecting objects and minimize the
computation costs. First, the R*-trees are built from objects min-
imum bounding boxes in each mask (computed and reference).
The spatial filtering operation is performed to identify possibly
overlapping objects (those with intersecting bounding boxes),
which are refined to those that overlap. This set is passed to a
final phase that computes the spatial measurements. The entire
query engine is deployed as a generic workflow stage in RT. As
such, the query engine can execute on parallel machines andmay
have several copies running in the computing environment as a
regular RT application stage.

Containerization and Integration with the 3D Slicer

In order to simplify the use of the auto-tuning methods and the
execution platform proposed in this work, we have (i) pack-
aged our implementation as a service in a Docker container
[65] and (ii) exported the main functionalities through a user-
friendly interface with the pathology module [37] of the 3D
Slicer [36]. With the Docker container of the auto-tuning

platform, the user can easily build the entire system and de-
ploy it into local or remote computing systems (i.e., Cloud
providers), whereas the pathology module contains a graphi-
cal interface for interacting with the entire system.

The auto-tuning process is invoked by calling the service
hosted in the Docker container. The user specifies the input im-
age, the reference mask, a set of parameters to be tuned, an
optimization algorithm, and a quality/error metric. This request
is sent to the service via a RESTFul interface call. The service
will parse the input request and insert it into a queue of tuning
requests. A tasks hander is returned by the services and can be
used by the client application (SlicerPathology in our case) for
querying the status or results of the given tuning request. As such,
the client side of the application or Slicer is not blocked during
the execution of the auto-tuning. The queue of requests is han-
dled internally by the web-service running into the container. In
our current implementation, the web-service processes, those
requests by executing multiple instances of the RT implementa-
tion of the application being tuned in a demand-driven basis as
the computing resources (CPU cores or GPUs), become avail-
able. Once the request is processed, it is placed into a queue of
completed requests and remains available for the user to retrieve
the results. The auto-tuning execution itself goes through a set of
steps that consists of executing the segmentation workflow, com-
puting the quality metric, and computing a new set of parameters
to evaluate, as described in the BMaterials andMethods^ section.

Fig. 3 Metrics’ computation workflow. Mask computed by the
segmentation workflow and the reference mask (ground-truth) are re-
ceived along with the metric of interest. Segmented objects (nuclei,
etc.) in the masks are converted into polygons and indexed using
Hilbert R*-tree index [60] to quickly identify intersecting objects. The

overlapping objects are passed to the RESQUE Engine to compute the
actual spatial metrics. The query engine is deployed as a generic
workflow stage in RT. As such, the query engine can execute on parallel
machines and can be reused among application workflows
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This process is executed until it converges. Another important
aspect that we want to highlight is that the web-service interface
is built independently of the 3D Slicer. As such, the same inter-
face could be used to integrate with other tools.

Our Slicer module interface provides a set of additional
features that can speed up and simplify the tuning. For in-
stance, it enables the integration with remote repositories1

for loading the data employed in the auto-tuning process,
which alleviates the burden on the user with respect to the
data management. Additionally, tools available in the 3D
Slicer module allow for the user to delineate objects and create
reference (ground truth) masks manually. This process may
also be sped up by starting the ground-truth generation with a
mask produced by the segmentation workflow and parameter
values chosen by the scientist (step 2 in Fig. 1). The results of
this segmentation are presented in the Slicer and can be
corrected/modified manually using the editing tools to change
the polygons that describe objects found in the segmentation,
instead of starting the mask generation from scratch.

Results and Discussion

Experiment Setup

The experiments were conducted on the Stampede-distributed
memory machine. Each node on Stampede has dual Intel
Xeon E5-2680 processors, an Intel Xeon Phi SE10P co-pro-
cessor, and 32 GB RAM. The nodes are inter-connected via
Mellanox FDR Infiniband switches. The auto-tuning methods
and the example segmentation pipelines are implemented in
the region template (RT) framework [59] for efficient execu-
tion on this machine. In this implementation, input images are
partitioned into image tiles—each image tile can be processed
independent of other tiles for nucleus segmentation.

In the experiments, the genetic algorithm (GA)method was
configured to evolve 10 individuals for 10 generations and set
up with a mutation rate ofM = 0.3 and a crossover rate of C =
0.5, because this setup experimentally led to best results. The
NM, PRO, and BOA algorithms were configured to stop after
testing 100 points in the search space, which asserts that all
optimization algorithms perform 100 application runs. We
have repeated all experiments 10 times. Average standard de-
viation is smaller than 1% for the Watershed-based workflows
and 3% for the Mean-Shift workflow. The time to select the
next set of parameters varies among the optimizationmethods.
It was about 77 s for BOA and around 10 ms for the other
algorithms. This cost is amortized by the high execution times
of the segmentation. The quality of segmentation results was
quantified with the average Dice coefficient, which ranges

from 0.0 to 1.0, in which higher values mean a better agree-
ment with ground-truth segmentation. The experiments used
15 image tiles extracted from Glioblastoma multiforme
(GBM) WSIs and manually segmented by a pathologist.

Multi-objective Parameter Auto-tuning:
Segmentation Quality and Execution Time

This section evaluates our methodology to maximize the
quality of segmentation results and to minimize the exe-
cution time of the 15 images used in our analysis. The
objectives are combined into a single optimization func-
tion using scalarization, and the user defines the weight
for each objective. To simplify the weighting, we have
normalized execution times between 0 and 1 (higher is
better), which is the same range of the average Dice co-
efficient used for quality.

Experimental results with multi-objective tuning are pre-
sented in Table 2 for the three segmentation workflows. The
weights of the objectives are varied to evaluate the ability of
the parameter auto-tuning framework to find parameters for
different user preferences. The results for single-objective
tuning (execution time weight set to 0) are also presented for
reference. The experimental results for the workflow using
Morphological Operations and Watershed show that the opti-
mization algorithms were able to improve the quality of seg-
mentation results by up to × 1.14 and speed up execution by ×
1.07 compared with the segmentation quality and execution
times using the default parameters. Moreover, the results show
a consistency in segmentation quality improvement when the
weight of this component is increased, i.e., higher quality met-
ric weights resulted in better Dice values. Also, GA and NM
achieved a slightly better performance than the other methods.

Results for the Level Set–based workflows are also
presented in Table 2. As is shown in the table, NM and
GA attained the best aggregated multi-objective optimiza-
tion value (marked in bold font) when segmentation qual-
ity and execution times are considered in all configura-
tions. When the workflow used the Watershed declumping
method, GA was able to find parameter sets with which
the quality metric was increased by × 1.28 and the execu-
tion time reduced by 11.79× compared with the default
parameters. The parameter sets found for the workflow
with Level Set and Mean-Shift are also very good. The
segmentation results for this workflow can be significant-
ly improved, while at the same, time the execution time is
reduced. When the segmentation operations are applied in
datasets with thousands of WSIs, these improvements can
translate to significant reduction in resource usage, much
faster analysis of data, and ability for large-scale studies.

The PRO optimization method also was able to find
parameter configurations with which the execution times
of the workflows significantly improved. However, the

1 http://quip1.bmi.stonybrook.edu, for example, contains thousands of images
from TCGA
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reductions in execution times were achieved with a higher
penalty in the quality metric than what GA achieved. The
BOA method, on the other hand, was not able to find
parameter sets that resulted in similar levels of reduction
in the execution times. Indeed, for Level Set with Mean-
Shift, parameters selected by BOA resulted in a higher
execution time vs. those using the default parameters.
These results indicate that BOA is efficient for single-
objective tuning, while GA and NM are the best methods
for multi-objective tuning.

We also examined why the gains in execution time
with the Morphological Operation- and Watershed-based
workflows were smaller than those with the Level Set–
based segmentations. We found that in practice, variations
in input parameters have a small impact in the execution
time of the first workflow. As such, it was not a failure of
the optimization methods in finding good parameter sets,
but a characteristic of the segmentation strategies used.

Figure 4 illustrates improvements in segmentation re-
sults via parameter auto-tuning for two images. The

Table 2 Results for the multi-objective auto-tuning as compared to the
application default parameters. The experiments were carried out using all
supported optimization algorithms as the weights for the results quality

(average Dice) and execution times were varied. The results are presented
as an average for the 15 input example images, and the best results for the
multi-objective function are highlighted in each case

Segmentation algorithm Weights Average Dice Speed up vs. default

Metric Time Default GA NM PRO BOA Improv. GA NM PRO BOA

Morphological Operations + Watershed 1 0 0.65 0.77 0.76 0.76 0.78 1.20 – – – –

1/2 1/2 0.65 0.70 0.72 0.73 0.70 1.10 1.09 1.08 1.07 1.07

2/3 1/3 0.65 0.74 0.74 0.74 0.72 1.13 1.08 1.07 1.06 1.06

4/5 1/5 0.65 0.75 0.75 0.74 0.75 1.14 1.07 1.07 1.05 1.04

Level Set + Mean-Shift declumping 1 0 0.61 0.79 0.75 0.73 0.78 1.29 – – – –

1/2 1/2 0.61 0.70 0.66 0.63 0.71 1.14 3.99 4.91 5.09 0.67

2/3 1/3 0.61 0.73 0.69 0.68 0.72 1.19 2.41 3.74 2.85 0.61

4/5 1/5 0.61 0.74 0.71 0.71 0.75 1.21 1.68 2.61 2.38 0.48

Level Set + Watershed declumping 1 0 0.61 0.79 0.78 0.75 0.78 1.29 – – – –

1/2 1/2 0.61 0.74 0.69 0.69 0.73 1.13 14.26 16.05 13.01 1.38

2/3 1/3 0.61 0.77 0.73 0.72 0.72 1.26 12.68 13.99 11.85 1.42

4/5 1/5 0.61 0.78 0.75 0.71 0.76 1.28 11.79 11.61 10.96 1.27

Fig. 4 Two sample image patches are presented with human
segmentation and the Level Set with Mean-Shift declumping workflow
segmentation using default and tuned parameter values. The green is used
to represent areas of agreement between algorithm and human, blue rep-
resents objects present in the human segmentation and not algorithm
results, and red are those (few) areas found by the algorithm and not by

human. The first image (image 01) has 0.44 and 0.80 Dice values, respec-
tively, with default and tuned parameters. For the second image (image
07), the Dice with default parameter is 0.71 and it is 0.83 after tuning.
Even for image 07 in which the Dice improvement is smaller, we can
observe that a significant number of nuclei missed with default parame-
ters are identified after tuning
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images were segmented with the Level Set– and Mean-
Shift-based workflows. The second column in the figure
shows the segmentation results from manual segmenta-
tion; the third column shows the results with the default
parameters; and the fourth column with the auto-tuned
parameter values. The green areas in the images refer to
agreement between the segmentation generated by the
workflow and the manual segmentation, whereas the blue
ones are the areas missed by the segmentation pipeline.
The red areas refer to those segmented by the pipeline but
not by the pathologist. Please notice that there are very
few red points, which means that the algorithms do not
significantly detect objects also not found by human
(please zoom in for better visualization).

Cross-Validation

This section computes Monte Carlo cross-validation analysis
repeated 10 times that separates the 15 input images into two
sets for training and testing. The application parameters are
tuned using the training set containing 20% of the images and
further evaluated into the remaining 80% images of the testing
set. The experiments used the GA optimization and evaluated
100 points. The tuning experiments were repeated 10 times,
and the standard deviation is smaller than 2% for the
Morphological Operation workflow and 6% for the Level
Set workflows.

The results are presented in Table 3. Since the results are
computed using a random selection of the training and test-
ing sets, results using different weights employ different
sets, and as such, default metric values are not the same.

However, the same sets are used within each weight combi-
nation (table row) for a fair comparison between default and
tuned parameters. For the Morphological Operation–based
workflow, the tuning platform found a set of parameters that
improved the quality results in over × 1.10 and the segmen-
tation speed up by 1.09×, and similarly to the previous ex-
periments, it finds different trade-offs among segmentation
result quality and speed of the execution as weights are
varied.

For the Level Set workflows, regardless of the
declumping method used, the optimization algorithms
were not able to find parameter sets that improve the seg-
mentation quality and execution time together. However,
the execution times were significantly improved (up to
10.5×) for both declumping cases for all weight combina-
tions with a small decrease in the segmentation quality.
The Level Set workflows are very sensitive to the nuclei
shape, and the parameters used for elongated nuclei, for
instance, will not perform well in round ones. This indi-
cates that a single set of parameters optimized for images
containing different cell shapes will not be optimal for
neither of them. Instead, the algorithm should use different
parameter sets according the expected nuclei structure.

In order to validate this observation, we performed anoth-
er cross-validation in which images were separated into two
groups: those with more elongated and those with round
nuclei. We executed a cross-validation in each of the groups
separately. We classified five images in the first group and
10 in the second group. Examples of images in these groups
are presented in Fig. 5. For the first group, one image is
selected for training and the other four images to test,
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Table 3 One group cross-validation evaluation. AverageDice improvements and execution time reductions for all segmentationworkflows in aMonte
Carlos cross-validation with 10 repetitions. The best results were highlighted in bold

Segmentation algorithm Weights Average Dice (0–1)

Metric Time Default Tuned (GA) Speed up

Morphological Operations + Watershed 1 0 0.65 0.72 –

1 1 0.66 0.68 1.09

2 1 0.65 0.71 1.07

4 1 0.66 0.73 1.06

Level Set + Mean-Shift declumping 1 0 0.63 0.60 –

1 1 0.59 0.57 3.10

2 1 0.62 0.58 2.32

4 1 0.62 0.60 1.64

Level Set + Watershed declumping 1 0 0.60 0.60 –

1 1 0.60 0.58 8.97

2 1 0.59 0.59 10.50

4 1 0.62 0.60 7.37

The best results were highlighted in bold
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whereas in the second group, two images are included in the
training and the other eight images in the testing set.

The results are presented in Table 4. The optimization al-
gorithm found parameters that improved the quality and exe-
cution time of the workflows for most of the weights. In the
workflow withWatershed declumping, the same quality result
observed in the single-objective optimization (0.70) was
attained, but the workflow was accelerated in 10.25× in the
multi-objective case.

Conclusions

Pathology image segmentation workflows are sensitive to
changes in input parameters, and an input parameter configu-
ration that performs well with a set of images may not com-
pute good segmentation results, for instance, for another
dataset. Tuning the application parameters is important to
maximize the quality of the results and/or reduce the applica-
tion’s execution time. The main challenges with tuning in-
clude (i) the large number of parameter combinations; (ii)
the high cost of evaluating a point in the search space due
compute expensive nature of the segmentation workflow;
and (iii) the difficulty of manually evaluating the search space
and the quality of a segmentation result.

In order to address these challenges, we have developed a
novel multi-objective optimization framework, implemented
as an integrated suite of optimization methods and tools, for
automatic parameter tuning of segmentation workflows in pa-
thology image analysis and evaluated it with three real-world
segmentation applications. In most experiments, we have ob-
served significant improvements over default parameter
values. Our framework was able to improve the average qual-
ity of the 15 images in × 1.28 and, at the same time, decrease
the segmentation execution time by 11.79×. The impacts of
these improvements are very significant to provide segmenta-
tion results with a better quality. This should in turn allow for
attaining better overall analysis results in integrated studies
using cell-level characterization, which are steps that typically
follow the segmentation and feature extraction phases. This is
essential for enabling the use of these technologies in clinical
settings, as accurately segmented objects/extracted features,
will lead to more reliable results. Further, the gains in speed
up will provide the ability of quickly analyzing large-scale
datasets, which are becoming available but are not yet fully
exploited. Thus, we expect that pathology image analysis
workflows should be submitted for a systematic tuning, such
as proposed in this paper, before they are used in practice in
order to maximize their benefits.

In addition, the evaluation of multiple optimization algo-
rithms has highlighted that a single algorithm will not always

Table 4 Two-group cross-
validation test. Average metric
improvements and execution time
reductions for the Level Set–
based segmentation workflow
using the two groups of validation
data (4 + 8 images). The best
results are highlighted

Segmentation algorithm Weights Average Dice (0–1)

Metric Time Default Tuned (GA) Speed up

Level Set + Mean-Shift declumping 1 0 0.61 0.69 –

1 1 0.62 0.62 8.56

2 1 0.61 0.62 1.72

4 1 0.62 0.69 1.37

Level Set + Watershed declumping 1 0 0.62 0.70 –

1 1 0.61 0.62 14.55

2 1 0.61 0.66 13.26

4 1 0.61 0.70 10.25

Fig. 5 Examples of images in
each of the two groups for cross-
validation. The first group of
images contain those with
elongated nuclei (group 1),
whereas the second group of
images contain more round-
shaped ones (group 2). The
Monte Carlos cross-validation
with 10 repetitions is executed in
each of the groups isolated
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be able to attain the best performance. Instead, depending on
the optimization task configuration (objective, workflow
choice, and input image), different algorithms may attain bet-
ter performance. For instance, the BOA algorithm attained
good results in single-objective runs, but was less efficient
than the GA in a configuration in which we want to tune for
quality and execution time.
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